
P.S. Kostenlose 2025 ISTQB CT-AI Prüfungsfragen sind auf Google Drive freigegeben von Zertpruefung verfügbar: https://drive.google.com/open?id=11iVxgB_glwnGZIcEPJJJp1jUrR-z_7R_
Es ist unnötig für Sie, zu viel Zeit eine Prüfung vorzubereiten. Kaufen Sie bitte ISTQB CT-AI Dumps von Zertpruefung. Mit diesen Dumps können Sie wissen, wie ISTQB CT-AI Prüfung hocheffektiv vorzubereiten. Das ist ein seltenes Gerät, das Ihnen helfen, sehr einfach die ISTQB CT-AI Prüfung zu bestehen. Sie werden bereuen, dass Sie diese Chance verlieren. So handeln Sie bitte schnell damit.
Heutzutage fühlen Sie sich vielleicht machtlos in der konkurrenzfähigen Gesellschaft. Das ist unvermeidbar. Was Sie tun sollen, ist, eine Karriere zu machen. Sicher haben Sie viele Wahlen. Und ich empfehle Ihnen die Fragen und Antworten zur CT-AI Zertifizierungsprüfung von Zertpruefung. Zertpruefung ist ein gute Gehilfe zur IT-Zertifizierung. So, worauf warten Sie noch? Kaufen Sie doch die Schulungsunterlagen zur ISTQB CT-AI Zertifizierungsprüfung von Zertpruefung.
>> CT-AI Prüfungsunterlagen <<
Schulungsunterlagen zur ISTQB CT-AI Zertifizierungsprüfung von Zertpruefung sind effizient, die von manchen Experten und einigen bestandenen Kandidaten bewiesen sind. Sie sind fast gleich wie die echten CT-AI Prüfungsfragen. Sie können Ihnen dabei helfen, die CT-AI Zertifizierungsprüfung zu bestehen. Wir werden Ihnen alle Ihren bezahlten Summe zurückgeben, entweder Sie die CT-AI Prüfung nicht bestehen, oder die Testaufgaben von ISTQB CT-AI irgend ein Qualitätsproblem haben. Vertrauen Sie bitte auf Zertpruefung, denn wir werden Ihnen stets begleiten.
Thema | Einzelheiten |
---|---|
Thema 1 |
|
Thema 2 |
|
Thema 3 |
|
Thema 4 |
|
Thema 5 |
|
Thema 6 |
|
Thema 7 |
|
Thema 8 |
|
Thema 9 |
|
Thema 10 |
|
Thema 11 |
|
70. Frage
Written requirements are given in text documents, which ONE of the following options is the BEST way to generate test cases from these requirements?
SELECT ONE OPTION
Antwort: A
Begründung:
When written requirements are given in text documents, the best way to generate test cases is by using Natural Language Processing (NLP). Here's why:
Natural Language Processing (NLP): NLP can analyze and understand human language. It can be used to process textual requirements to extract relevant information and generate test cases. This method is efficient in handling large volumes of textual data and identifying key elements necessary for testing.
Why Not Other Options:
Analyzing source code for generating test cases: This is more suitable for white-box testing where the code is available, but it doesn't apply to text-based requirements.
Machine learning on logs of execution: This approach is used for dynamic analysis based on system behavior during execution rather than static textual requirements.
GUI analysis by computer vision: This is used for testing graphical user interfaces and is not applicable to text-based requirements.
71. Frage
Which ONE of the following options represents a technology MOST TYPICALLY used to implement Al?
SELECT ONE OPTION
Antwort: D
Begründung:
* Technology Most Typically Used to Implement AI: Genetic algorithms are a well-known technique used in AI . They are inspired by the process of natural selection and are used to find approximate solutions to optimization and search problems. Unlike search engines, procedural programming, or case control structures, genetic algorithms are specifically designed for evolving solutions and are commonly employed in AI implementations.
* Reference: ISTQB_CT-AI_Syllabus_v1.0, Section 1.4 AI Technologies, which identifies different technologies used to implement AI.
72. Frage
Written requirements are given in text documents, which ONE of the following options is the BEST way to generate test cases from these requirements?
SELECT ONE OPTION
Antwort: A
Begründung:
When written requirements are given in text documents, the best way to generate test cases is by using Natural Language Processing (NLP). Here's why:
* Natural Language Processing (NLP): NLP can analyze and understand human language. It can be used to process textual requirements to extract relevant information and generate test cases. This method is efficient in handling large volumes of textual data and identifying key elements necessary for testing.
* Why Not Other Options:
* Analyzing source code for generating test cases: This is more suitable for white-box testing where the code is available, but it doesn't apply to text-based requirements.
* Machine learning on logs of execution: This approach is used for dynamic analysis based on system behavior during execution rather than static textual requirements.
* GUI analysis by computer vision: This is used for testing graphical user interfaces and is not applicable to text-based requirements.
References:This aligns with the methodology discussed in the syllabus under the section on using AI for generating test cases from textual requirements.
73. Frage
A beer company is trying to understand how much recognition its logo has in the market. It plans to do that by monitoring images on various social media platforms using a pre-trained neural network for logo detection.
This particular model has been trained by looking for words, as well as matching colors on social media images. The company logo has a big word across the middle with a bold blue and magenta border.
Which associated risk is most likely to occur when using this pre-trained model?
Antwort: B
Begründung:
A major risk when using apre-trained neural networkfor logo detection is that it mayinherit biases and defectsfrom the original dataset and training process. This means that the model could misidentify or fail to recognize certain logos due to:
* Differences in data preparation:The original training data may have used a different preprocessing method than the new dataset, leading to inconsistencies.
* Limited transparency:The exact details of the dataset and biases within it may not be known, which can cause unexpected behavior.
* Bias in logo detection:If the model was trained on a dataset with certain color or text preferences, it may disproportionately misidentify logos with similar characteristics.
This inherited bias can result in:
* False Positives:Recognizing other brand logos as the beer company's logo.
* False Negatives:Failing to detect the actual logo when variations occur (e.g., different lighting or partial visibility).
* Algorithmic Bias:The model may favor certain shapes or color contrasts due to biased training data.
Thus,the most appropriate risk associated with using this pre-trained model is inherited bias.
* Section 1.8.3 - Risks of Using Pre-Trained Models and Transfer Learningexplains how pre-trained models may inheritbiases and undocumented defectsthat affect performance in a new environment.
Reference from ISTQB Certified Tester AI Testing Study Guide:
74. Frage
You have been developing test automation for an e-commerce system. One of the problems you are seeing is that object recognition in the GUI is having frequent failures. You have determined this is because the developers are changing the identifiers when they make code updates.
How could AI help make the automation more reliable?
Antwort: B
75. Frage
......
Die Schwierigkeiten können den Charakter eines Menschen testen. Eine schlechte Situation kann die Aufrichtigkeit eines Menschen zeigen. Wenn man einer schlechten Situation gegenüberstehen, können nur die mutigen es gant leichtnehmen. Sind Sie ein mutiger Mensch? Wenn Sie sich nicht so gut auf Ihre Prüfung vorbereiten, können Sie es noch leichtnehmen. Weil Sie die Fragenkataloge zur ISTQB CT-AI Prüfung von Zertpruefung haben. Und eine ISTQB CT-AI Prüfung wird Sie nicht niederschlagen.
CT-AI Fragenpool: https://www.zertpruefung.de/CT-AI_exam.html
P.S. Kostenlose und neue CT-AI Prüfungsfragen sind auf Google Drive freigegeben von Zertpruefung verfügbar: https://drive.google.com/open?id=11iVxgB_glwnGZIcEPJJJp1jUrR-z_7R_
Tags: CT-AI Prüfungsunterlagen, CT-AI Fragenpool, CT-AI Fragen Und Antworten, CT-AI Online Prüfung, CT-AI Zertifizierungsantworten